WW2010
University of Illinois

WW2010
 
welcome
 
online guides
 
archives
 
educational cd-rom
 
current weather
 
about ww2010
 
index

Online Guides
 
introduction
 
meteorology
 
remote sensing
 
reading maps
 
projects, activities

Meteorology
 
introduction
 
air masses, fronts
 
clouds, precipitation
 
el nino
 
forces, winds
 
hurricanes
 
hydrologic cycle
 
light, optics
 
midlatitude cyclones
 
severe storms
 
weather forecasting

Forces, Winds
 
introduction
 
pressure
 
pressure gradient
 
coriolis force
 
geostrophic wind
 
gradient wind
 
friction
 
boundary layer wind
 
sea breezes
 
land breezes

Pressure
 
definition
 
variation with height
 
isobars
 
pressure surfaces
 
variation with temps
 
high pressure center
 
low pressure center

User Interface
 
graphics
text

.
Isobars
lines of constant pressure

A line drawn on a weather map connecting points of equal pressure is called an "isobar". Isobars are generated from mean sea-level pressure reports and are given in millibars.

The diagram below depicts a pair of sample isobars. At every point along the top isobar, the pressure is 996 mb while at every point along the bottom isobar, the pressure is 1000 mb. Points above the 1000 mb isobar have a lower pressure and points below that isobar have a higher pressure.

Any point lying in between these two isobars must have a pressure somewhere between 996 mb and 1000 mb. Point A, for example, has a pressure of 998 mb and is therefore located between the 996 mb isobar and the 1000 mb isobar.

Sea-level pressure reports are available every hour, which means that isobar maps are likewise available every hour. The solid blue contours (in the map below) represent isobars and the numbers along selected contours indicate the pressure value of that particular isobar.

Such maps are useful for locating areas of high and low pressure, which correspond to the positions of surface cyclones and anticyclones. A map of isobars is also useful for locating strong pressure gradients, which are identifiable by a tight packing of the isobars. Stronger winds are associated with stronger pressure gradients.



variation with height
Terms for using data resources. CD-ROM available.
Credits and Acknowledgments for WW2010.
Department of Atmospheric Sciences (DAS) at
the University of Illinois at Urbana-Champaign.

pressure surfaces