WW2010
University of Illinois

WW2010
 
  welcome
 
> online guides
 
  archives
 
  educational cd-rom
 
  current weather
 
  about ww2010
 
  index

Online Guides
 
  introduction
 
> meteorology
 
  remote sensing
 
  reading maps
 
  projects, activities

Meteorology
 
  introduction
 
  air masses, fronts
 
  clouds, precipitation
 
  el nino
 
  forces, winds
 
> hurricanes
 
  hydrologic cycle
 
  light, optics
 
  midlatitude cyclones
 
  severe storms
 
  weather forecasting

Hurricanes
 
  introduction
 
> growth processes
 
  development stages
 
  movement
 
  public awareness
 
  public action
 
  damage
 
  names
 
  global activity
 
  el nino

Growth Processes
 
> definition
 
  sources
 
  cisk

User Interface
 
  graphics
> text

NOTE: We've guessed that you're not using a client that supports colored tables and have tried to compensate. Low graphics mode looks much better on clients that do... we recommend switching to Netscape 3.0 or Microsoft Internet Explorer.
.
Hurricanes
a tropical cyclone with winds > 64 knots

Hurricanes are tropical cyclones with winds that exceed 64 knots (74 mi/hr) and circulate counter-clockwise about their centers in the Northern Hemisphere (clockwise in the Southern Hemisphere). [Image: (46K)]
Image by: the GOES Project

Hurricanes are formed from simple complexes of thunderstorms. However, these thunderstorms can only grow to hurricane strength with cooperation from both the ocean and the atmosphere. First of all, the ocean water itself must be warmer than 26.5 degrees Celsius (81°F). The heat and moisture from this warm water is ultimately the source of energy for hurricanes. Hurricanes will weaken rapidly when they travel over land or colder ocean waters -- locations with insufficient heat and/or moisture.

[Image: (34K)] This is a sea surface temperature map for the northern hemisphere summer. The yellow, orange, and red colors show water temperatures warm enough to sustain hurricanes (> 26.5°C).
Image by: OSDPD

Related to having warm ocean water, high relative humidities in the lower and middle troposphere are also required for hurricane development. These high humidities reduce the amount of evaporation in clouds and maximizes the latent heat released because there is more precipitation. The concentration of latent heat is critical to driving the system.

The vertical wind shear in a tropical cyclone's environment is also important. Wind shear is defined as the amount of change in the wind's direction or speed with increasing altitude. The video below shows how wind shear plays a role in hurricane formation.

[Embedded Object: Windshear Movie (2.48MB)]

When the wind shear is weak, the storms that are part of the cyclone grow vertically, and the latent heat from condensation is released into the air directly above the storm, aiding in development. When there is stronger wind shear, this means that the storms become more slanted and the latent heat release is dispersed over a much larger area.



Hurricanes
Terms for using data resources. CD-ROM available.
Credits and Acknowledgments for WW2010.
Department of Atmospheric Sciences (DAS) at
the University of Illinois at Urbana-Champaign.

sources