WW2010
University of Illinois

WW2010
 
  welcome
 
> online guides
 
  archives
 
  educational cd-rom
 
  current weather
 
  about ww2010
 
  index

Online Guides
 
  introduction
 
> meteorology
 
  remote sensing
 
  reading maps
 
  projects, activities

Meteorology
 
  introduction
 
  air masses, fronts
 
  clouds, precipitation
 
  el nino
 
  forces, winds
 
  hurricanes
 
  hydrologic cycle
 
  light, optics
 
  midlatitude cyclones
 
> severe storms
 
  weather forecasting

Severe Storms
 
  introduction
 
  dangers of t-storms
 
> types of t-storms
 
  tstorm components
 
  tornadoes
 
  modeling

Types of T-storms
 
  storm spectrum
 
  single cell storms
 
> multicell clusters
 
  multicell lines
 
  supercells

Multicell Clusters
 
  introduction
 
  components
 
  development
 
  perspectives
 
> life cycle
 
  evolving storm

User Interface
 
  graphics
> text

NOTE: We've guessed that you're not using a client that supports colored tables and have tried to compensate. Low graphics mode looks much better on clients that do... we recommend switching to Netscape 3.0 or Microsoft Internet Explorer.
.
Life Cycle
evolution of cells in a multicell cluster

This illustration portrays a portion of the life cycle of a multicell storm. As cell 1 dissipates at time = 0, cell 2 matures and becomes briefly dominant. Cell 2 drops its heaviest precipitation about 10 minutes later as cell 3 strengthens, and so on.

[Image: time sequence diagram of cells in a multicell cluster storm (57K)] Thus, severe multicell storms characteristically produce a brief period of hail and/or downburst damage during and immediately after the strongest updraft stage. Later updraft resurgence may or may not result in further damage, leading to a spotty damage pattern.

If the winds in the storm environment are blowing from left to right, it can happen that the storm motion arising from new cell development nearly cancels the motion arising from the environmental winds. Thus, new cells reach maturity over the same location, repeatedly.

This is the train-echo pattern of flash flood producing rainfall, although train echoes also may occur as different multicell thunderstorm complexes moving across an area with a greater time interval. Not having the benefit of radar, it will seem to citizens living in an area receiving repeated, short-term precipitation bursts that the storm is backing up and moving across again and again. This is a popular but erroneous notion.

A closer view at T = 20 minutes (from in the above slide) shows that cell 3 still has the highest top, but precipitation is undercutting the updraft in the lower levels. New echo development is occurring aloft in cells 4 and 5 in the flanking line, with only light rain falling from the dissipating cells 1 and 2 on the northeast side of the storm cluster.

[Image: diagram of multicell cluster storm isolated (63K)]

The inset shows what the low-level PPI radar presentation might look like. This storm appears to be unicellular but the several distinct echo tops tell us otherwise. Note that the greatest risk of severe weather at this time extends from beneath the heavy precipitation areas of cell 3 (hail and downbursts) into the area of the leading gust front (downbursts and, on rare occasions, weak gust front tornadoes or gustnadoes).

[Image: real example of above diagram (61K)]
Photograph by: Moller

Here is a real storm, with radar superimposed. Observe the physical similarities to the second slide. This Texas Panhandle storm was non-severe. Looking north-northeast from about 20 miles. Note that the updraft numbering is reversed.



perspectives
Terms for using data resources. CD-ROM available.
Credits and Acknowledgments for WW2010.
Department of Atmospheric Sciences (DAS) at
the University of Illinois at Urbana-Champaign.

evolving storm