WW2010
University of Illinois

WW2010
 
  welcome
 
> online guides
 
  archives
 
  educational cd-rom
 
  current weather
 
  about ww2010
 
  index

Online Guides
 
  introduction
 
  meteorology
 
> remote sensing
 
  reading maps
 
  projects, activities

Remote Sensing
 
  introduction
 
> radars
 
  satellites

Radars
 
  introduction
 
  radar basics
 
> imagery
 
  velocity patterns
 
  applications

Imagery
 
> wsr-88d
 
  mdr images
 
  bright band feature

User Interface
 
  graphics
> text

NOTE: We've guessed that you're not using a client that supports colored tables and have tried to compensate. Low graphics mode looks much better on clients that do... we recommend switching to Netscape 3.0 or Microsoft Internet Explorer.
.
WSR-88D Radar Imagery
detecting precipitation

The word radar is an acronym from "Radio Detection and Ranging". Radar images are useful for locating precipitation. As a Magnetic Resonance Imaging (MRI) scan examines the inside of a human body, a radar examines the inside of a cloud. A radar sends a pulse of energy into the atmosphere and if any precipitation is intercepted by the energy, part of the energy is scattered back to the radar. These returned signals, called "radar echoes", are assembled to produce radar images.

[Image: sample radar image (46K)]

The location of the colored radar echoes indicate where precipitation is falling and the various colors indicate the intensity of the precipitation through the color code in the lower left corner of the image. The example radar image above shows several strong thunderstorms moving through Illinois and Indiana on April 20, 1996. Regions of light and dark blue indicate regions of lighter precipitation while areas of red and pink indicate strong, to occasionally severe thunderstorms.

Normally, it is difficult to distinguish precipitation type on the basis of the radar reflectivity alone. Snow and light drizzle both produce radar reflectivity with about the same value. Melting snow and moderate rain also have similar values. Very high reflectivities (the grays on the scale on the image above) are always associated with hail.



Radar Basics
Terms for using data resources. CD-ROM available.
Credits and Acknowledgments for WW2010.
Department of Atmospheric Sciences (DAS) at
the University of Illinois at Urbana-Champaign.

mdr images