University of Illinois

Helper Menu
  exit helper
  previous page
> helper page
  more detail

NOTE: We've guessed that you're not using a client that supports colored tables and have tried to compensate. Low graphics mode looks much better on clients that do... we recommend switching to Netscape 3.0 or Microsoft Internet Explorer.
Winds near the surface
Winds affected by friction

Geostrophic wind blows parallel to the isobars because the Coriolis force and pressure gradient force are in balance. However it should be realized that the actual wind is not always geostrophic -- especially near the surface.

The surface of the Earth exerts a frictional drag on the air blowing just above it. This friction can act to change the wind's direction and slow it down -- keeping it from blowing as fast as the wind aloft. Actually, the difference in terrain conditions directly affects how much friction is exerted. For example, a calm ocean surface is pretty smooth, so the wind blowing over it does not move up, down, and around any features. By contrast, hills and forests force the wind to slow down and/or change direction much more. [Image: (40K)]

As we move higher, surface features affect the wind less until the wind is indeed geostrophic. This level is considered the top of the boundary (or friction) layer. The height of the boundary layer can vary depending on the type of terrain, wind, and vertical temperature profile. The time of day and season of the year also affect the height of the boundary layer. However, usually the boundary layer exists from the surface to about 1-2 km above it.

Terms for using data resources. CD-ROM available.
Credits and Acknowledgments for WW2010.
Department of Atmospheric Sciences (DAS) at
the University of Illinois at Urbana-Champaign.