WW2010
University of Illinois

Helper Menu
 
  exit helper
 
  previous page
 
> helper page
 
  more detail

NOTE: We've guessed that you're not using a client that supports colored tables and have tried to compensate. Low graphics mode looks much better on clients that do... we recommend switching to Netscape 3.0 or Microsoft Internet Explorer.
.
Supercell Thunderstorms
thunderstorms with deep rotating updrafts

The last of the four major storm types is the supercell. We define a supercell as a thunderstorm with a deep rotating updraft (mesocyclone). In fact, the major difference between supercell and multicell storms is the element of rotation in supercells. As we shall see, circumstances keep some supercells from producing tornadoes, even with the presence of a mesocyclone.

[Image: supercell storm (57K)]
Photograph by: Moller

Even though it is the rarest of storm types, the supercell is the most dangerous because of the extreme weather generated. This storm was producing baseball hail east of Carnegie, Oklahoma, as it was photographed looking east from 30 miles. From right to left (south to north), we note the flanking line, main Cb, and downwind anvil above the precipitation area.

The flanking line of the supercell behaves differently than that of the multicell cluster storm, in that updraft elements usually merge into the main rotating updraft and then explode vertically, rather than develop into separate and competing thunderstorm cells. In effect, the flanking updrafts "feed" the supercell updraft, rather than compete with it.


Terms for using data resources. CD-ROM available.
Credits and Acknowledgments for WW2010.
Department of Atmospheric Sciences (DAS) at
the University of Illinois at Urbana-Champaign.