
13.19
THE WEATHER VISUALIZER, JAVA TM, HABANERO TM, AND THE FUTURE

Joel Plutchak*, Robert B. Wilhelmson, Mohan K. Ramamurthy, Steven E. Hall, and Vladimir Tokarskiy
University of Illinois at Urbana-Champaign, Urbana, Illinois

1. INTRODUCTION

 The Department of Atmospheric Sciences at the
University of Illinois Urbana-Champaign has developed
a web-based visualization tool known as The Weather
Visualizer (DAS, 1997), which allows users to
interactively select and customize the presentation of
meteorological data and images.__

 Since its debut in 1995, the goals of the various
versions of the Weather Visualizer have remained fairly
consistent:

•. Provide reasonably fast access to customizable
user requests

•. Present a useful yet manageable set of choices
for data type and options

•. Incorporate appropriate explanatory or tutorial
information to complement the
data

•. Use a framework that is easily obtainable and
familiar to a wide range of users

While these goals have largely been accomplished,
computer and network technologies have been
advancing at a rapid pace, allowing newer and better
ways to meet the goals. Therefore, Weather Visualizer
development has been proceeding along two lines, one
using conventional World Wide Web (WWW)
technology and another using object-oriented,
distributed technology.

 2. CONVENTIONAL IMPLEMENTATION

 The initial, conventional implementation of the
Weather Visualizer (Ramamurthy et al., 1996) uses
standard WWW technology: HTML documents and
forms displayed on the client computer coupled with
Common Gateway Interface (CGI) scripts that run on
the server computer.

 The introductory WWW document contains
categories of data from which the user chooses, e.g.,
surface observations, forecast products, upper air

soundings, etc. Each option is linked to either further
data subcategories or a form from which relevant
options for a specific data set can be selected. Once the
desired options are selected and the choices are
submitted, a CGI script runs on the server. The script
constructs the requested data product and returns it in
the form of an HTML document. For example, from the
surface observation page, a user might choose to view a
map of the southwestern portion of the United States,
with current temperature, cloud symbols, weather
symbols, and dew point plotted for major cities, add
pressure contour lines, and plot it all on top of a current
infrared satellite image. A script on the server would get
the request, execute the programs necessary to satisfy
the request, and return an image having the requested
elements embedded in an HTML document.

 An important facet of the HTML documents are
hyperlinks to explanatory and tutorial information (Hall
et al., 1996a). These come in two basic forms. The
WWW forms for each data category contain hyperlinks
explaining each of the available options for that data
set, as well as hyperlinks to related topics such as the
definition of Greenwich Mean Time. The other type of
explanatory information is in the form of hyperlinks
from the returned data products. Clicking on the legend
of an image product accesses information pertaining to
the appropriate legend item. For example, the surface
report image described above features a legend for
surface contours, fronts, and radar summary. Clicking
on the radar portion of the legend brings up an
explanation of radar, as well as how to interpret a radar
summary plot.

 There are two significant limitations to the
conventional WWW/CGI approach. One is that
interactivity in user choice is quite limited. User input
cannot be verified until submission of a request, so if,
for example, data is not available for a given choice, the
user is not informed until after submitting the request
and waiting for a response from the server. Depending
on network connectivity,
network load, and server load, the time lag can be
substantial.

 The most significant drawback to this approach is
that since each request spawns a computationally
intensive process, the ability to handle requests is
limited by the computational capacity of the server.
Experience has shown that under normal load, a single
server (in this case a Hewlett-Packard 9000/715

*Corresponding author address: Joel Plutchak, Dept. of
Atmospheric Sciences, Univ. of Illinois at Urbana-
Champaign, 105 S. Gregory St., Urbana IL 61801; email
<plutchak@uiuc.edu>.

workstation) can handle 10-20 simultaneous requests.
During significant weather events, the large number of
requests can easily saturate the server, adversely
impacting system responsiveness.

 Many solutions to the server saturation problem
have been investigated, e.g., adopting the FastCGI
interface, use of multiple servers, static allocation and
control of system resources, etc. However, it is
recognized that the conventional WWW/CGI method
will always be limited by the capabilities and capacity
of the server, and fails to take advantage of the
computing resources of the client computer.

 3. IMPLEMENTATION USING JAVA

 The release of Sun Microsystems’ Java
programming language and environment (Sun, 1997) in
early 1996 has significantly changed the rules for
WWW programming. Java allows the creation of
applets— small programs that are downloaded and
executed on the client system as they are needed. This
capability simultaneously presents a solution to the
server saturation problem and allows a higher level of
user interactivity with the programs and data.

 The server load problem is the most obvious
advantage the use of Java brings. In one scenario, the
program itself is transmitted once, while data is
transmitted as it is needed and then manipulated locally
on the client. Since simple file transmission (whether
Java applets or meteorological data) is all that occurs
from the server viewpoint, the load on the server is
greatly diminished in comparison with the conventional
CGI implementation.

 Enhanced interactivity has been a key goal for the
Weather Visualizer (Wojtowicz et al., 1996). The use of
Java enhances interactivity in several ways. Data input
and verification can be done on the client side by the
Java program, so those conditions can be detected and
corrected without the need for a network data transfer
and response from the server. Also, once the requested
data is transferred to the Java applet, it can be
manipulated by the user with no further network
transmission and resulting time lag. Furthermore,
embedded information can be transmitted along with
data. For example, by sending navigation and
calibration modules along with a satellite image, the
applet itself can display information about the image in
meaningful units such as reflectivity or temperature for
image pixel values and latitude/longitude for image
locations.

 The applets that have been developed to date take
advantage of the above features (Hall et al., 1996b).
One applet is used to obtain an interactive weather
report. A series of current images is transmitted and
assembled under user control on the client. The images
used are provided as parameters to the applet, so any
data that can be displayed as an image can be used with
the applet. The initial set of data consisted of surface
observations, three types of satellite images, radar

summaries, frontal analysis plots, isobars, and
isotherms. Since the data is time sensitive, images are
updated automatically as newer data reaches the server.
Geographic location is computed on the client system,
as is cloud top temperature from an infrared satellite
image. The applet also allows access to additional data
from the server, displaying (both graphically and in
tabular form) forecast data and current surface
observations at any point on the displayed map. Finally,
the applet contains hyperlinks to the same tutorial and
explanatory information that is available from the
conventional visualizer.

 Another applet provides access to and animation
of sequences of satellite image products generated for
the department’s Daily Planet™ WWW server (DAS,
1997b). The applet allows user control over animation
of the image sequences, including specific image
selection and animation speed, options that more
conventional WWW animation techniques do not allow.

 Currently under development are small general-
purpose applets which are meant to be liberally but non-
intrusively deployed within more conventional WWW
documents. This will allow those who have the desire
and capability to enrich their WWW browsing by using
Java to do so, while not distracting those who wish to
rely on the more conventional WWW functionality.
These applets will implement common scientific
needs— data plotting with interactive control of the
display, viewing images with embedded information,
the ability to subset or zoom while viewing data, etc.

 Additional ongoing work with Java involves a
further shift of computation from the server to the
client. Rather than downloading data formatted as
images, the source data itself can be transmitted and
manipulated appropriately on the client. This will not
only lessen the computation needed on the server, but
allow the user more flexibility in formatting the
information on the client system.

 One such technique under development involves
resolution-appropriate data transfer. A full resolution
GOES data set combined with a vector map database
and a meteorological station database is being used for
testing the concept. The user will be presented with a
greatly reduced version of the full image, with an
appropriately sparse depiction of station locations and
map boundaries. A region of interest would then be
selected by zooming or otherwise selecting a subset of
the image. The display of the zoomed data would take
place on the client until the viewed resolution became
degraded. At that time, a higher-resolution subset of the
full image would be requested from the server, allowing
a beneficial tradeoff between data download time and
access to high resolution data. Simultaneously, the
density of stations plotted as well as the granularity of
the map boundaries would be adjusted appropriately.
Starting with a quick-loading sub-sampled full
hemisphere GOES image with continental boundaries
depicted and a handful of stations plotted, the user
could zoom down to, for example, Chicago and

surrounding suburbs, with county boundaries and local
highways plotting on a 1-km resolution subset of the
GOES image.

 Java brings an additional strength to providing
WWW functionality. As an object-oriented
programming language, Java facilitates writing modular
reusable objects, which can be used as the building
blocks for subsequent related efforts. These modular
objects also lend themselves particularly well to
distributed programming, since they are by nature self-
contained entities which can be easily transmitted over
the network.

 4. HABANERO

 Although not an initial goal of the Weather
Visualizer, we found that the ability to interactively
collaborate with individuals at potentially far-flung
locations on the Internet was a logical next step. The
target use for such a capability is in a classroom setting,
with a mentor from the meteorological community
providing a real-time weather briefing for students in a
distant city. Rather than verbally informing the students
to bring up a certain image, the mentor would control a
master application with slave applications on the
students’ desktops, allowing each student to see exactly
what the mentor is viewing and describing.

 The ability to add collaborative capability was
made much simpler by the release of Habanero (NCSA,
1997) by a group at the National Center for
Supercomputing Applications (NCSA). Habanero is a
framework for sharing objects with colleagues
distributed around the Internet. Included are all the
networking facilities, routing, arbitration and
synchronization mechanisms necessary to accomplish
the sharing of state data and key events between
collaborator's copies of a software tool. The Habanero
project is investigating the enhancements in distributed
interpersonal communication made possible when
single-user computer software tools are recast as multi-
user, collaborative work environments. With Java at the
forefront of Internet application development, the
Habanero group chose to provide the collaborative
capability as a set of Java classes and objects.

 Casting Habanero in terms of Java classes made
adapting the Java version of the Weather Visualizer to
the collaborative framework a natural and obvious
choice. Indeed, the interactive weather report applet
was adapted as a featured demonstration application for
the premier release of Habanero. With a few
modifications to the original applet, the scenario
presented above became a reality. Further development
along this path will depend upon feedback from the
initial users.

 Java Share, a package from Sun Microsystems
which is scheduled for release sometime in 1997, will
also provide collaborative capability to Java
applications.

 5. THE FUTURE

 Technology in the computer science sub-
disciplines of networking, object-oriented
programming, and distributed systems are advancing
rapidly, and will continue to present better solutions to
the goals of a tool such as the Weather Visualizer. We
believe the best way to take advantage of such advances
is to develop tools in a modular and forward-looking
way.

 As discussed earlier, Java provides an excellent
environment for creating interactive WWW
applications. However, it is still an immature language.
Several planned extensions to the Applications
Programming Interface (API) have potential for
incorporation into the Weather Visualizer. The Java
Media APIs will encompass 2-dimensional, 3-
dimensional, and animation packages. Support for 2-
dimensional graphics and imaging is primitive in the
current release, and 3-dimensional and animation
capabilities are not directly supported. The addition of
these APIs will remove much of the complexity
currently needed to implement basic graphical and
imaging functions, and allow the use of Virtual Reality
(VR) for visualizing data from Java programs. Use of
VR and other extended graphics capabilities is planned
for future versions of the Weather Visualizer.

 Work done by the GeoLens project (USDAC,
1997) also holds great interest for use with the Weather
Visualizer. Part of the project, known as GeoHarness,
involves providing a standard framework for describing
and locating earth science data sets and images. Using
GeoHarness, the Weather Visualizer could query the
user for geographic location, sensor type, etc., connect
to a GeoHarness server to locate candidate data sets,
and finally display the selected data. This would open
up use of the application to a wide range of data, greatly
increasing its utility.

 Another area which could open up the possibilities
of the Weather Visualizer involves other projects using
distributed applications and object-oriented design.
Instead of having a program running on a single
machine with a copy of data that may have existed
elsewhere, distributed objects and remote method
invocations allow an application running locally to
transparently access data and execute procedures that
exist on other systems on the network. One would in
effect transform the current standalone applets into part
of a larger and more flexible distributed system. For
example, an image represented by a remote object
would be formatted or calibrated using a subroutine that
exists on yet another system, displaying the result in a
Weather Visualizer applet– with little additional work
on the part of at applet. CORBA, the Common Object
Request Broker Architecture, is one standard being
developed that defines mechanisms for providing
interoperability between applications on heterogeneous
distributed environments. Sun Microsystems’
forthcoming Remote Method Invocation (RMI) and

Object Serialization Java APIs also hold promise in this
area.

 Whatever the future holds, we will continue to
make use of emerging technologies and remain
positioned to respond to further advances.

6.ACKNOWLEDGEMENTS

 The initial version of the Weather Visualizer as
well as the development of the tutorial/explanatory
information was performed under the Collaborative
Visualization project, which is funded by NSF Grant
#RED-9454729. The remainder of the work described
was developed under the HORIZON Project, funded by
NASA Information Infrastructure Technologies and
Applications (IITA) Grant CAN-OA-94-1.

 Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

 NCSA and Habanero are proprietary trademarks
owned by the Board of Trustees of the University of
Illinois.

 7. REFERENCES

 Dept. of Atmospheric Sciences (DAS), cited 1997a:
The Weather Visualizer. [Available on-line
from <http://covis.atmos.uiuc.edu/covis/visualizer/
>].

 — — , cited 1997b: The Daily Planet™ . [Available on-
line from <http://www.atmos.uiuc.edu/>].

 Hall, S. E., Sridhar, M., Ramamurthy, M. K., and
Wilhelmson, R. B, 1996a: The Design and
Implementation of Multimedia Web-based
Instructional Modules in K-12 Education.
Preprints, Fifth Symposium on Education, Atlanta
GA, Amer. Meteor. Soc., 128-131.

 — — , Ramamurthy, M. K., Wilhelmson, R. B.,
Plutchak, J., Wojtowicz, D., and Sridhar, M.,
1996b: The Weather Visualizer: A Java Tool for
Interactive Learning. Proceedings of the First
Symposium on Education, Lincoln, Nebraska, Int.
Geosci. and Remote Sensing Soc., 1498-1500.

 NCSA, cited 1997: NCSA Habanero. [Available
on-line from <http://www.ncsa.uiuc.edu/SDG/Soft
ware/Habanero/HabaneroHome.html>.]

 Ramamurthy, M. K., Wilhelmson, R. B., Hall, S. E.,
Plutchak, J., and Sridhar, M., 1996: CoVis
Geosciences Web Server: An Internet-based
Resource for the K-12 Community. 12th
International Conference on Interactive
Information Processing Systems for Meteorology,
Oceanography, and Hydrology, Atlanta GA, Amer.
Meteor. Soc., J27-32.

 Sun Microsystems, Inc., cited 1997: Java™ –
Programming for the Internet. [Available on-line

from <http://java.sun.com/>.]

 USDAC, cited 1997: Geolens Technical Information.
[Available on-line from <http://usdac2.rutgers.edu/
project/tech_info.html>.

 Wojtowicz, D., Wilhelmson, R. B., Ramamurthy, M.
K, 1996: IICE: Bringing Interactivity to Image-
based WWW Products. 12th International
Conference on Interactive Information Processing
Systems for Meteorology, Oceanography, and
Hydrology, Atlanta GA, Amer. Meteor. Soc., 413-
417.

