
IICE: BRINGING INTERACTIVITY TO IMAGE-BASED WWW PRODUCTS

David Wojtowicz1,2 , Robert Wilhelmson1,2, Mohan Ramamurthy1

University of Illinois at Urbana-Champaign
1Department of Atmospheric Sciences

2National Center for Supercomputing Applications (NCSA)

1. INTRODUCTION

Over 250 World Wide Web sites now offer a
variety of up-to-date observational and forecast
weather maps, radar and satellite images, and
the like. This has introduced net-savvy weather
data consumers to an unprecedented availability
of meteorological information. An ordinary
desktop computer and a high speed modem now
grants access to data previously only available to
the professional meteorologist through expensive
services and equipment.

High school students studying basic earth
sciences can learn by relating the current
conditions in the school yard with their causes as
detailed on weather maps they access from their
classroom PC. Disaster relief agencies and
insurance companies alike can access hourly
satellite images of a hurricane preparing to batter
the east coast in order to determine where
volunteers and claim adjusters will be needed
most.

As impressive and valuable an achievement
of the information revolution this is, there is often
something vaguely unsatisfying about the basic
process of selecting a map or image from a list,
viewing it for a few moments, dismissing it and
then repeating this process for several other
images. Not that the process of use could be
made much simpler or that we desire to make it
more complicated, but perhaps because it
remains largely a passive activity.

Sure, browsing the Web is an interactive
process, but sometimes not all that much more so
than flipping through television channels can be
called interactive....especially when all you’re

 * Corresponding Author Address: David Wojtowicz,
University of Illinois at Urbana-Champaign, Dept. of
Atmospheric Sciences, 105 S. Gregory Ave., Urbana,
IL 61801, davidw@uiuc.edu
1 See Dan Vietor’s “Interactive Weather Maps” at
Purdue University: http://thunder.atms.purdue.edu/
interact.html or Charles Henrich's “The Interactive
Weather Browser” at Michigan State University:
http://rs560.cl.msu.edu/weather/interactive.html

doing is picking from lists of images. We expect
more from our computers. We know that we can
learn faster and understand more if we are able to
look at the same data in several different ways,
easily compare related variables (like wind and
temperature change) and can try out “what if?”
ideas. We find displays that focus in on the area
in which we live more compelling than
generalized national views. In general, how can
we achieve greater interactivity when it comes to
image based Web products?

Interactive Image Client Environment (or
IICE) is a project that seeks to address these
needs by designing prototype environments that
extend the interactive capabilities of traditional
Web environments. The University of Illinois at
Urbana-Champaign Department of Atmospheric
Sciences is carrying out this work as part of a
larger NASA-funded project called HORIZON,
which seeks to enable greater public access to
earth and space science data through
enhancements of and innovations in World Wide
Web technology.

From the user’s point of view, what specific
capabilities should this new more interactive Web
environment have? From the developer’s point
of view, how should these capabilities be
implemented? The IICE project has considered
both of these questions.

2. INTERACTIVE CAPABILITIES

The concepts presented here are by no
means all that one might want to accomplish in
this area, however these are some that we
consider initially important to work on, especially
in the context of providing interactive
meteorological products for the Web.

2.1 More Versatility and Control

In general, more versatility and
customizability would be very useful. This
includes the versatility to select from many
possible combinations of meteorological variables
and visualization methods for each. It includes
the versatility to change analysis parameters such

as contour intervals. It also includes the
customizability to show regional views with more
detail than can be presented in national views.

Instead of just choosing from a limited set of
pre-defined weather maps, you could design your
own map by picking and choosing its components
and presentation. For example, you might
choose to look at just surface pressure contours
at a small contour interval over the northeastern
U.S. to study them in detail. Then, you may wish
to overlay wind vectors to study the relationship
between pressure and wind. You might also want
to overlay temperature contours and wind vectors
over a satellite image to show frontal positions.

Controls for such customization could take
the form of the kinds of option menus, toggle
buttons, fill-in blanks, etc. that HTML “forms”
already offers. However, the problem with HTML
forms is that they are indeed forms. A form is
something you fill in, and when entirely complete,
you send off and wait for a response. A more
interactive mode of operation would allow for the
controls to be modified individually with a
response occurring after each modification.

2.2 Image Hyperlinking

While one can hyperlink an entire inlined
image such as an icon to a new URL, the ability to
hyperlink portions of images to additional data
would also be useful. We’re used to seeing
highlighted phrases in HTML documents and
know that we will likely be able to obtain additional
information on the highlighted topic simply by
clicking. However, this capability is not available
in image based products (other than with the
limited capabilities provided by the HTML
"imagemap" feature). For example, clicking on
an unfamiliar weather symbol yields no additional
information.

Actually, there are several types of image
hyperlinking to consider. The most basic is being
able to hyperlink a portion of an image to an
additional WWW resource such as a descriptive
document. The weather symbol example above
would be an example of this. The next level
would be to associate the actual location on map
of a user’s click point (in real world coordinates)
with data. This might be from a fixed set of
points....clicking in the southeast corner of
Arizona might yield additional information about
the conditions in Tucson or it might be for any
point....clicking on a pixel of an enhanced infrared
satellite image might return the cloud top
temperature at that point.

Of course, this is already possible to a limited
extent. Several real-world applications make use
of HTML’s existing “imagemap” capability which
simply transmits the pixel coordinates of a user’s
clickpoint back to the server where these
coordinates are used to select specific data that is
transmitted back to the user’s browser in the form
of a new document. The typical application here
is to click on a city shown on a national map and
receive back the local conditions and forecast for
that city.1

However, the actions of image hyperlinking
should not be limited to simply causing the
browser to fetch a new document or other WWW
resource. Often, that approach is too heavy-
handed...one has to wait for a new page to load,
which replaces the current page and then must
be returned from. This is especially the case
where the resulting hyperlinked data is small and
the number of items to be requested is potentially
large. In this case it would be more practical to
simply temporarily display the additional
information adjacent to the image.

If the information could be derived instantly
from data already available to the browser at little
computational cost, such information could be
displayed instantaneously without clicking as the
mouse pointer passes over items of interest. This
would be similar to the way many applications
programs display brief explanatory messages
about certain parts of their user interfaces
whenever the pointer is near them such as with
the “Balloon Help” feature on Macintosh
computers.2

2.3 Animation

The animation of weather images over time
has always been useful as weather occurs as a
sequence of time-ordered events...fronts move
across the land, storms grow to full size and later
dissipate and hurricanes move along a path,
swirling as they do. These actions are best
displayed by looping through a set of hourly
images. While “movies” of satellite images and
such do exist on the Web in MPEG, Quicktime
and other similar formats, image quality and the

2 This capability is well demonstrated in relation to
weather maps by the University of Michigan's Blue-
Skies package. It can display temperatures at the top
of its window as the user passes their mouse pointer
over various cities on a weather map and provides
detailed information when a user clicks on a city. This
gopher-based application, which works on Macs and
PC/Windows, is available at http://blueskies.sprl.
umich.edu/WUnderground/Blue-Skies_MacV1.1.html

user’s control over the looping are generally
limited.

The image quality suffers because the
compression schemes used by these formats is
generally a “lossy” compression, which
additionally is compromised by the fact that most
of the movie compression algorithms were
designed for full-motion video rather than for
computer graphics.3

Most MPEG and Quicktime players also offer
limited control...generally just the ability to play,
restart or stop. A few also offer single step
controls. Backwards animation, though
sometimes possible in single-step mode, is
generally not possible at normal speed. This is
because the frames can be decoded in forward
sequence only due to the nature of the encoding
algorithm. Speed control is also usually absent.

On the other hand, stand-alone
meteorological analysis packages often offer
more powerful capabilities to step or play forward
or backwards at any speed using simple keyboard
or mouse controls. This allows one to, for
example, “bounce” between two frames allowing
one to note small changes. This is aided by the
fact that the images have not been degraded by
lossy compression.

3. IMPLEMENTATION

Of course, little of this is possible with the
Web technology in use at the time of this writing.
Certainly, some of this functionality can partially
be implemented with existing technology, such as
by using the HTML forms to request customized
weather maps or using the "imagemap" feature to
implement basic image hyperlinking. Obviously
though, additional technology is needed.

3.1 Client / Server Division

One must be aware that WWW-based
systems have a client component (a user’s Web
browser running on their local machine), a
network component and a server component.
These new interactive capabilities will require
additional capabilities from and impose additional
load on each of these components. Past
experience has proven that it is essential to

3 Contrary to what one might expect, in a good number
of cases, the MPEG loops on our WWW server
actually take up MORE bytes than the total of the
same set of individual images in GIF format....taking
longer to transfer and providing less quality!

carefully consider how the work is to be divided
among these components.

This is well illustrated by recent experience on
a related project. The CoVis Weather Visualizer
version 2 is a Web-based tool we recently
prototyped here in collaboration with
Northwestern University in support of the
Collaborative Learning Through Visualization
Project.4

This tool allows one to custom design a
current weather map with various backgrounds
and overlays. The user makes these selections
via HTML forms widgets. All of the processing
involved in generating the custom map is handled
on the server. This works very nicely...until a few
dozen users try to access it simultaneously. At
that point, the server is simply overloaded due to
the large amount of processing needed per
request.

The problem is that server capacity (when the
amount of processing per request is large) simply
can not scale to keep up with demand. However,
client computing capacity scales well with
increasing users. The ratio between users and
client computers always remains close to one.
Therefore, it makes sense to move most of the
interactive part of the processing to the client end.
Not only does ensure sufficient computational
capability for each user, but it simply makes
sense to do the interactivity computation as close
to the point of use as possible. This is why IICE
concentrates its efforts on the development of
client technology.

3.2 Turning To Java

Until recently, the problem with implementing
capabilities on the client end was the one needed
to write, maintain and distribute different software
for each type of platform to be used. The effort
required to support such software on multiple
platforms is well beyond the capacity of most
projects and typically, only one or two platforms
are supported. Additionally, users had to obtain
and install updated versions of this software on
their machines in order to use its capabilities.

The introduction of the Java environment,
hailed by many experts as THE answer to many
of the Web’s current limitations, from Sun
Microsystems changed everything. This
environment consists the object-oriented C++-
like Java language, a Java interpreter and a

4 Please see http://www.covis.nwu.edu/ for more
information on this project.

WWW browser called HotJava that has the
interpreter imbedded in it.5

Programs written in the Java language, after
being compiled into a compact and efficient form,
can be run anywhere there exists a Java
interpreter, regardless of the platform type. The
HotJava browser, in addition to being able to
display inlined images, can run inlined Java
programs...with the interface/output appearing
directly inside a HTML document.

For example, many of the Java demo
documents include what appears to be an inlined
image of the Java cartoon mascot, Duke.
However, it is not an inlined image, but the display
of a small inlined Java program called an applet.
This enables Duke to continually wave at you.
The code for these applets is loaded from a
standard WWW server at the time of use just as
inlined images are. This code is executed in a
secure, contained environment such that
potentially ill-intentioned code simply does not
have sufficient access to the rest of one’s system
to do anything nefarious such as erase files, plant
a virus or search through confidential data.

The platform independent nature of Java
ends the problems with having to port a client
application to many different platforms. Its load
on demand capability allows one to centrally
maintain and update a copy that is automatically
accessed by anyone who needs to reference it.

At first thought, one way to go about
implementing our interactive capabilities would be
to build entire analysis and display tools in Java
for the user to run on their end and simply ship
them the raw data. The problem here is that it is
not possible to incorporate the capabilities of the
large number of existing software packages and
libraries that already do very good analysis. One
would have to reproduce these capabilities in the
Java language from scratch.

Instead, the idea is to develop a basic set of
Java classes (a class is roughly a unit of software
capable of performing a set of operations on
certain kinds of data) which could be customized
as needed. These classes would perform basic
interactive operations and the server would use
existing and new analysis packages to generate
semi-preprocessed data to be used by the client.

This later approach does put some of the
work back on the server, but only to generate one
set of each of the possible analysis components
which can be reused until they expire. The client

5See Sun's Java Home Page at http://java.sun.com/
for full details.

is responsible for combining them in any of the
thousands of possible user chosen combinations
and dealing with other user interaction.

4. CLIENT CAPABILITIES

The following outlines some of the basic
capabilities that IICE will implement as Java
classes:

4.1 User Interface Controls

These classes will implement controls similar
to those found in HTML forms such as option
menus, checkboxes, fill-in blanks, pushbuttons,
etc. Just like HTML forms widgets, these will be
specifiable by HTML-like tags and can be flexibly
inlined in documents. The difference is that they
are not restricted to the simple behavior of HTML
forms which simply transfers the values of all the
widgets in the form to the server and awaits a
new document in response. Individual actions
can be attached to each making it possible to
implement immediate responses to user
interaction with them, such as immediately
verifying the validity of a user’s input or causing a
new display to be generated.

4.2 Image Construction

These classes will be used to construct the
images from the pre-processed analysis
components provided by the server. A typical
instance would be to overlay contour plots. The
data (in the form of pre-generated contours) for
the each data variable would be fetched from the
server as needed. These classes would then be
used to composite them into a single image. If
the user should turn off or on one of the
components, the layer of the composite
containing that component would simply be
removed or replaced.

Mentioning pre-generated contours above
brings up the question as to what form this data is
in. The simplest way to do this would be to have
the contours plotted on otherwise blank images
and then composite the image layers together.
However, one concept that IICE is likely to
explore is the use of a CGM-like system (CGM
stands for Computer Graphics Metacode). In
such a system, drawing commands such as
“draw line segments through these points” are
transmitted rather than an image.

The use of a CGM-like system has some
particular advantages, the first of which is that for
simple vector graphics such as contour plots, the
drawing commands take up fewer bytes than
would the resulting image of a reasonable size.

This would, of course, reduce network load and
improve transfer time. Another advantage is that
this gives the client the ability to draw high quality
graphics at any user defined size. Components
of a raster nature such as satellite images would
still be transmitted in raster form as a special
case.

4.3 Image Hyperlinking / Information
Extraction

These classes will retrieve additional
information from the server that specify pre-
defined areas in the image that either display data
when the mouse pointer passes over them (the
data to be displayed is also sent) or hyperlink to
additional resources when these areas are
clicked.

Additionally, control can be transferred to a
Java routine in either of these cases. Several
such pre-defined routines will be provided. One
will have the ability to translate colormap entries
to data values (using a table retrieved from the
server). This can be used to implement an
interactive image that shows cloud top
temperatures as the user moves the mouse
pointer over the image.

4.4 Animation

This class will provide for simple animation of
several images, both ones that are constructed
locally and ones that are retrieved from the
server. As discussed earlier, this has
advantages over commonly used “movie”
formats. Controls will be provided to play and
step both forward and backwards at various
speeds.

5. ADDITIONAL INFORMATION

Additional information concerning the IICE
project can be found on the IICE Home Page:
http://www.atmos.uiuc.edu/horizon/
subprojects/iice/.

